Reduced graphene oxide as capturer of dyes and electrons during photocatalysis: surface wrapping and capture promoted efficiency.

نویسندگان

  • Jinghai Liu
  • Zhichao Wang
  • Liwei Liu
  • Wei Chen
چکیده

To elucidate the roles of graphene in photoelectric events and mass transfer during photocatalytic process is important for engineering graphene-semiconductor hybrid photocatalyst. Here, we demonstrated reduced graphene oxide (RGO) capturing dyes and photoinduced electrons during photocatalytic degradation of organic dyes in water. It captures dyes from water through adsorption and desorption irreversible hysteresis, and captures photoinduced electrons from semiconductor through surface junction. The RGO was attached to the surface of TiO(2) in the form of surface wrapping. After one-step photocatalytic reduction of graphene oxide (GO) and TiO(2) in ethanol-water solvent under UV irradiation, the RGO wrapped TiO(2) hybrid (graphene-w-TiO(2)) photocatalyst was obtained. Using visible absorption spectroscopy, we also demonstrated these captured dyes were degraded during photocatalysis. The photocatalytic test showed the RGO significantly improved the photocatalytic activity of this hybrid photocatalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thi...

متن کامل

Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide.

Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching...

متن کامل

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process

The influence of the number of operating parameters on photocatalytic and sonocatalytic Acid Red 88 degradation from an aqueous solution was investigated in this paper. The experimental results indicated that the sonocatalytic process with Ni-TiO2 was far more effective for the degradation of high concentration azo dyes, regardless of the process condition. In order to achieve a larger surface ...

متن کامل

Hydrophobicity Properties of Graphite and Reduced Graphene Oxide of The Polysulfone (PSf) Mixed Matrix Membrane

Hydrophobicity properties of graphite and green synthesized graphene (gsG) from exfoliated graphite/GO towards polymer membrane characteristic and properties at different weight percentage concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. PSf/graphite and PSf/gsG membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed...

متن کامل

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 29  شماره 

صفحات  -

تاریخ انتشار 2011